Learn R Programming

Directional (version 4.7)

Permutation based 2-sample mean test for (hyper-)spherical data: Permutation based 2-sample mean test for (hyper-)spherical data

Description

Permutation based 2-sample mean test for (hyper-)spherical data.

Usage

hcf.perm(x1, x2, B = 999)

lr.perm(x1, x2, B = 999)

embed.perm(x1, x2, B = 999)

het.perm(x1, x2, B = 999)

Arguments

x1

A matrix with the data in Euclidean coordinates, i.e. unit vectors.

x2

A matrix with the data in Euclidean coordinates, i.e. unit vectors.

B

The number of permutations to perform.

Value

A vector including:

test

The test statistic value.

p-value

The p-value of the F test.

kappa

The common concentration parameter kappa based on all the data.

Details

The high concentration (hcf.perm), log-likelihood ratio (lr.perm), embedding approach (embed.perm) or the non equal concentration parameters approach (het.perm) is used.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

hcf.boot, spherconc.test, conc.test

Examples

Run this code
# NOT RUN {
x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:2, each = 30)
x1 <- x[ina == 1, ]
x2 <- x[ina == 2, ]
hcf.perm(x1, x2)
lr.perm(x1, x2)
het.boot(x1, x2)
# }

Run the code above in your browser using DataLab